חAmIBIA UПIVERSITY

OF SCIEПCE AחD TECHחOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: \quad Bachelor of Science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 07BSAM	LEVEL: 7
COURSE CODE: NUM702S	COURSE NAME: NUMERICAL METHODS 2
SESSION: \quad NOVEMBER 2022	PAPER: THEORY
DURATION: \quad HOURS	MARKS: 100

FIRST OPPORTUNITY - QUESTION PAPER	
EXAMINER	DrS.N. NEOSSI NGUETCHUE
MODERATOR:	Prof S.S. MOTSA

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 5 decimals where necessary unless mentioned otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 2 PAGES (Including this front page)
Attachments
None

Problem 1 [40 Marks]

1-1. Show that the formula for the best line to fit data (k, y_{k}) at integers k for $1 \leq k \leq n$ is $y=a x+b$, where

$$
a=\frac{6}{n\left(n^{2}-1\right)}\left[2 \sum_{k=1}^{n} k y_{k}-(n+1) \sum_{k=1}^{n} y_{k}\right] \text { and } b=\frac{4}{n(n-1)}\left[(2 n+1) \sum_{k=1}^{n} y_{k}-3 \sum_{k=1}^{n} k y_{k}\right]
$$

1-2. Establish the Padé approximation $e^{x} \approx P_{2,2}(x)=\frac{12+6 x+x^{2}}{12-6 x+x^{2}}$ and express $R_{2,2}$ in continued fraction form.

1-3. Write down the general formula of $S_{f}(x)$, the Fourier series of a function f that is 2π periodic, piece-wise continuous and defined on $(-\pi, \pi)$.

1-4. Find the Fourier sine series for the 2π-periodic function $f(x)=x(\pi-x)$ on ($0, \pi)$. [Hint: Assume f is an odd function]. Use its Fourier representation to find the value of the infinite series
$[10=7+3]$

$$
1-\frac{1}{3^{3}}+\frac{1}{5^{3}}-\frac{1}{7^{3}}+\frac{1}{9^{3}}+\cdots
$$

Problem 2 [31 Marks]
2-1. Define $T_{n}(x)$, the nth degree Chebyshev polynomial of the first kind for $x \in[-1,1]$ and show that:
(i) $T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x)$, for $k \geq 1$, with $T_{0}(x)=1, T_{1}(x)=x$;
(ii) T_{n} has n distinct zeros/roots $x_{k}=\cos \left(\frac{(2 k+1) \pi}{2 n}\right)$ for $0 \leq k \leq n-1$.

2-2. Use the formulae in (i) of question 2-1 to find $T_{2}(x), T_{3}(x)$ and then economize
$P(x)=1+2 x^{2}+3 x^{3}$, once.
2-3. Given the integral $\int_{0}^{3} \frac{\sin (2 x)}{1+x^{5}} d x=0.6717578646 \ldots$
2-3-1. Using the sequential trapezoidal rule, state the formula of $T(J)=R(J, 0)$ and then compute its values for $J=0,1,2$.
$[3+10=13]$
Problem 3 [29 Marks]
3-1. For an n-point Gaussian quadrature rule, the Legendre polynomials $q_{n}(x)$, for $x \in[-1,1]$, can be generated by the recursion formula

$$
q_{n}(x)=\left(\frac{2 n-1}{n}\right) x q_{n-1}(x)-\left(\frac{n-1}{n}\right) q_{n-2}(x) \text { for } n=2,3, \ldots \text { and } q_{0}(x)=1, q_{1}(x)=x .
$$

3-1-1. Compute $q_{2}(x), q_{3}(x)$ and determine the zeros of $q_{3}(x)$.
$[2+2+3=7]$
3-1-2. Using the zeros of $q_{3}(x)$ as quadrature nodes, state the associated quadrature formula and determine the corresponding weights by the method of undetermined coefficients. How do you call the rule thus obtained?
$[2+8+2=12]$
3-2. Consider the following matrix $A=\left[\begin{array}{lll}6 & 5 & -5 \\ 2 & 6 & -2 \\ 2 & 5 & -1\end{array}\right]$. Find its largest eigenvalue (in magnitude) and the corresponding eigenvector after three iterations with the initial vector $x^{(0)}=(-1,1,1)^{T}$.

